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ABSTRACT _ _ _

! i :\
\

To obtain digital accuracy in a position control

system it is necessary to quantize the measured variable.

The minimum resolution required by the system specifica-

tions dictates the quanta size. This quantization process

reduces the information content in a signal which severely

limits the dynamics performance of the controlled system.

In addition, fine quantization of a signal is not feasible in

some physical systems and this would appear to limit the

usefullness of a digital controller./

• A means of retaining the full information content

in a quantized variable by use of a high frequency dither is

developed. This dither signal does not involve adding a

dither to the input to the quantizer and consequently the

quantizer circuitry is not required to process information

at high rates so that reliability of the digital portion of the

control loop is maintained. This technique also makes it

possible to obtain a resolution which is smaller than the

quanta size. This method of quantization is combined with

a relay control element in a digital feedback system. The

relay is effectively linearized by a high frequency dither.

This provides the capability of satisfying a wide range of

performance specifications and eliminates some of the

stability problems normally associated with digital systems. •
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CHAPTER I

INTRODUCTION

A pulse-data system is a special case within the general

class of digital systems. The name is derived from the fact that

the information transfer is sccomplished by means of pulses.

The information is stored by counting the pulses and registering

the totals in the form of a coded number. The main reasons for

using a pulse-data system are that the system can be imple-

mented economically and the input data can be produced relative-

ly simply by storing electrical pulses on magnetic tape, although

the input pulses can be generated in many other ways. These

pulses contain both position and velocity information. Each

pulse commands an incremental change in the plant output, and

the pulse repetition rate determines the rate of change of the

plant output. This incremental change is termed a quanta.

A typical pulse-data system is shown in block diagram

form in figure I. The reference or input signal r(t) , in the

form of electrical pulses, drives one input of a bidirectional

counter. These pulses must be direction-sensitive so that the

counter can discriminate between forward and reverse command

pulses. The state of the counter is fed to a digital-to-analog

converter, which converts a coded number to an analog signal

capable of controlling the plant. The output of this plant is fed
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to a quantizer Q_ , which emits frequency-modulated,

direction-sensitive pulses. The positions of the output variable

when the quantizer emits a pulse are termed quanta points.

Pulses produced by the quantizer are subtracted from the

count in the bidirectional counter. Thus, the bidirectional

counter is a memory element which stores the error in the

system between the required reference position and the actual

output position to an integral number of quanta. The quanta

size is determined by the accuracy requirement for the

controlled plant, and the pulses from the quantizer carry the

same information as the reference input pulses.

There are several disadvantages inherent in this type

of system. Since the data is necessarily discontinuous, there

is a ripple produced in G(t) , which can be quite large when

the input reference velocity is low. This occurs because the

pulse repetition rate on the input signal can approach the band

pass frequency of the system being controlled. The input

ripple, therefore, will be passed through the system. It is

possible to eliminate the discontinuities in the feedback signal.

This can be accomplished by allowing the controller information

on the state of the plant between quanta points, using a high

frequency dither signal added to the plant output. The dis-

continuous nature of the input signal can be minimized. Since

this information is stored as a series of pulses, it is not

possible to obtain an exact indication of the input signal between
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pulses. If, however, the resolution of each pulse is decreased,

a substantial decrease in the plant output ripple is obtained.

Another disadvantage is the use of a digital-to-analog

converter in the forward loop. The requirements for component

tolerances within this device are relatively high. Any change

of component values or voltages causes problems with drift and

noise, with a consequent loss in accuracy. The digital-to-

analog conversion can be replaced by using the digital indication

of the error to time modulate a square wave signal. This

signal can then be used to operate a dead zone relay. The time

average of the relay output would then be proportional to the

error. Relay control systems have many advantages over con-
1

tinuous systems. They provide a more efficient usage of

power, require a minimum of components to implement and are

inexpensive.

The third disadvantage is a lack of closed form ex-

pressions allowing synthesis or analysis of this system. The

sample data techniques have been well exploited in the use of

the Z transform, but those techniques do not apply in this case

since we have no knowledge of the time at which the feedback

pulse will occur and no information on the output between the

quanta points.

]Superscript numerals refer to the Bibliography.
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This thesis proposes a pulse-data system that is

compensated to provide complete information on the state of

the plant output and replaces the digital-to-analog converter

by a linearized dead zone relay.



CHAPTER II

GENERAL SYSTEM DESCRIPTION

This chapter presents a general discussion of the com-

pensated pulse-data relay system presented in this thesis. For

a more detailed discussion, the reader is referred to appendix A.

Figure Z is a schematic block diagram of the system.

The reference input to the bidirectional counter (BDC) is in

the form of pulses with sign information. The feedback signal

from the plant output G(t) is quantized by the QI block. The

quantized information in the form of pulses and sign information

is then fed to the bidirectional counter. The bidirectional

counter stores the error to an integral number of quanta in

binary notation. The state of this counter is fed to the sum-

mation block _ which, in combination with the signal dl(t) ,

produces a time-modulated rectangular wave. This rectangu-

lar wave operates a dead zone relay which is used as the input

to the plant.

Since all relay systems exhibit instabilities in the form

of limit cycles unless they are compensated by the addition of

Z
a dead zone around the null position, a dead zone relay is

used where the dead zone is equal to D. The signal dl(t ) J

shown in figure Z, is a chain of equally spaced pulses. The
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summation block counts the number of pulses of dl(t ). The

first pulse sets the input to the relay equal to +- D, provided

there is a non-zero error. The sign of D is determined by

the sign of the error. When the number of pulses of dl(t ) is

equal to the quantized error, the output to the relay is set equal

to zero. The block can be represented by an integrator and

adder combination. The first pulse sets the integrator to its

saturation level and the input to the relay to -+ D. The

succeeding pulses cause the integrator output to be a decreasing

staircase wave form. When the sum of the quantized error

and the integrator output is equal to or less than the dead zone

of the relay, the relay is turned off. Since the error is

limited to integral values due to the quantization of the input

and the feedback, the block and the relay may be represented

by a dead zone relay with a sawtooth wave form added to its

input. The capacity of the _ block is limited. When this

capacity is exceeded, the relay input is again set equal to _+ D

and a new count sequence is initiated. The saturation level of

the system is, therefore, set by the capacity of the _ block.

The effect of this signal addition is to linearize the dead zone

relay, as described in chapter 3.

The usage of a linearized relay controller as described

above can cause a ripple in the plant output. The magnitude of

this ripple is dependent upon the frequency of the dither signal

relative to the band pass of the plant being controlled. If a
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high-frequency, low amplitude ripple can be tolerated by the

system, it can be used to advantage to eliminate stiction

problems. A solid state relay was used and was, therefore,

capable of very high frequency operation, which allows the

output ripple amplitude to be controlled by selecting its

frequency.

The second dither signal is designated as dz(t) . This

signal is added to one output from the quantizer Q' . The

quantizer designed for this system provides an analog signal

which is proportional to the distance between quanta points.

By adding dz(t) to this analog signal, it is possible to com-

pensate the input to the relay for the feedback quantization

error. This is accomplished by feeding this signal into a

relay with a dead zone equal to one quanta. The average output

from this relay is then proportional to the distance of the plant

output between quanta points. Mathematically, this is the same

as linearizing the quantizer by the addition of a dither signal to

its input. All pulse-data systems are vulnerable to the loss of

pulses. Lost pulses cause accumulative errors. If the addition

of the dither signal were implemented at the input to the

quantizer, the bidirectional counter would be dithered at this

frequency, increasing the danger of losing pulses.

Figure 3 shows the equivalent continuous loop for the

compensated system of figure 2. Chapter 3 verifies the
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linearization of the quantizer so that the feedback loop can be

shown as a single loop with a unity gain. The saturation

element has ideal saturation characteristics determined by

the dead zone of the relay. No information is lost, however,

due to saturation since the bidirectional counter has sufficient

capacity to contain the maximum possible error expected in

the system. This is illustrated in figure 4, which shows the

bidirectional counter performing the function of integration
3

in the input path and in the feedback path.

The ability to represent the compensated pulse-data

system by the equivalent continuous system of figure 3 allows

analysis in closed form of this system for ramp inputs by means
4and5

of the steady-state Laplace transformation techniques.

With the pulse-data system as shown, it is possible to

have a step input applied in two ways. The first and the

simplest to implement is to have the input reference signal in

the form of pulses with a repetition rate much greater than

the response rate of the system. This will look like a step

input with a very large but finite slope. The second method

is to have a presettable bidirectional counter, This allows a

true step input. Consideration of step response behavior is

essential for a pulse-data system, Any application in the

machine control field would require a path control system for

a machining operation and, in order to have a repetition of
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one operation, it is necessary to return the machine tool to a

reference position at the completion of the operation. With a

system of this kind, the reference position can be entered in

the counter at the completion of the operation, and the system

will travel at maximum velocity back to the given reference.



CHAPTER III

MATHEMATICAL DESCRIPTION OF

THE QUANTIZER AND THE RELAY

A quantizer is a transducer that emits an electrical

pulse whenever the controlled variable takes on values which

are one quanta apart. One quanta represents the minimum

resolution required commensurate with system accuracy

specifications. In order to simplify the following discussion

and subsequent analysis, the input and output variables will be

expressed in quanta. The main effect of the quantization

process is to subdivide the entire range of the controUed

variable into increments. Figure 5 shows the quantizer input-

output characteristics. As shown, the input to the quantizer

is an analog quantity and the output is a chain of pulses, each

pulse representing a transition of the input from one quanta to

the next. The position of the controlled plant between quanta

points is unknown, and the quantity c must then be defined as

follows:

0 _ c _ 1 (1)

Figure 6A shows the equivalent quantizer representation

with the quantizer of figure 5A combined with an integration.

The input-output relationships for this quantizer are shown in

figure 6B. This definition of the quantizer is somewhat arbitrary.

14
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It can be noticed from figure 5B that the first output pulse

occurs at

t_(t) = c

where c is limited by equation (I). For convenience, the

definition given for the quantizer in figure 6B arbitrarily sets

c = 0.5

This definition has been chosen in order to allow stability

investigation by the describing function analysis that follows

later in this chapter.

The quantizer fits within the general class of highly

nonlinear transducers. The idea of linearizing these highly

nonlinear transducers by means of an externally applied signal

has been investigated by several people. Loeb 6 has suggested

that any nonlinear system can be linearized in this manner. A

question of linearizing a quantizer has been raised by

G. G. Furman. 7 He has used a sinusoidal dither in attempting

a linearization of a quantizer and has shown that exact lineari-

zation can be obtained using a sawtooth dither. Furman did

not, however, suggest any means of implementation of this

dither nor did he show any of the effects of varying the dither

amplitude due to drift.

Any system that quantizes information is subject to

instabilities in the form of limit cycles for a limited class of

input conditions. The limit cycle behavior of this system in
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response to step inputs will be investigated by describing

function techniques. A low frequency pulse input will also

produce a limit cycle. This limit cycle will be referred to as

a ripple on the plant output, and its characteristics can be

determined by using the steady-state Laplace transform

calculus.

A describing function will be developed for the quantizer.

In order _o include the effects of the dither, it will be necessary

to use the dual-input describing function. 8 The methodology in

the dual-input describing function approach is to ensure that

the dither frequency is much greater than the frequency of the

limit cycle assumed for the system. This allows use of the

approximate dual-input describing function developed by

9
Boyer. The dither effectively alters the quantizer input-

output characteristics and allows replacement of the quantizer

by an alternate set of characteristics. The assumed sinusoidal

limit cycle can then be applied to the altered quantizer to

investigate the stability of the system. The advantage of this

technique is that it is not necessary to use the describing

function approach in order to utilize the altered quantizer in

the system loop. These altered characteristics in no way

depend upon the shape of the assumed limit cycle and, there-

fore, will be valid for any input whose frequency is much less

than the dither frequency. In the following analysis, the

altered quantizer characteristics are first developed and,
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secondly, the describing function for the altered quantizer is

determined.

Furman has shown that the sawtooth dither that will

exactly linearize the quantizer should be as follows:

for O< t_T d.

w

In general:
I"

d(t) = m I

L.

where: n = 0, 1, Z, 3...

m = 0.5, 1.0, 1.5, 2.0.

This wave is shown in figure 7A.

Zt +n_O mu(t - Td)

When using a dither signal to linearize the quantizer,

it is not desirable (and in many cases not possible) to dither

the input to the quantizer. If the input to the quantizer is

dithered, this causes the bidirectional counter to be dithered

at a pulse repetition rate Zm times "the dither frequency,

where m is the dither arnplitude. As described in chapter 2,

the dither signal bypasses the bidirectional counter. In order

to accomplish this efficiently, a dither signal which is either

positive or negative was chosen. The sign is determined by

the sign of the error.
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The dither used is shown in figure 7B and can be

expressed as:

d(t) + f'l'_- oo= -m " u(t
U.

where: n = O, 1, 2, 3...

Figure 8 shows the block diagram used for the

describing function analysis. Since the quantizer has been

considered in the forward loop, the dither is subtracted. The

reason is as follows:

{t) = _q(t) + _t)

where: A(t) = f/{t) -

for nq< G{t)<(n + 1)q

and ft (t) = nq
q

nq

e{t) = r(t) - G{t)

e(t) = {r(t) - G (t)} - A(t)
q

A(t) represents the quantization error and is that part of the

error corrected for by the dither.

If the rate of change of _(t) is much less than the rate

of change of d{t), then the altered characteristics for the

quantizer are obtained by assuming G{t) is constant over one
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cycle of the dither. The equivalent gain can be calculated for

this value as follows:

where: _ '
ave

K = l_ rave
eq

Tdjo dt

Integration over the one period T d of the dither is

valid since the dither signal is periodic with period T d.

That is

d{t) = d(t + T d)

In addition to this, the quantizer output is periodic with

period one quanta. Therefore, it is only necessary to calculate

the equivalent gain for values of _(t) as follows:

0 1

The equivalent gain can be determined from figure 9:

Keq =JO

T d

t
d

T d

1

Therefore, K =
eq

T d
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From the equation for the dither:

td(t) - m
T d

for 0 l_ t _z Td

Therefore:
m_b _b 1 -

f2 + _ = I; i.e. -- =
T d T d m

I - (1 - _)
m

Therefore, K =
eq

1
This is a straight line with a slope of rff'.

In general, when G(t) = n + A(t)

for 0 _z A(t) < 1

n = 0, 1, 2, 3. . .

eq

w

n + 1 - G(t)

m

Note: This equation is not defined for

n ÷ 1 - _(t)_ 1
m"

Since K would be a negative quantity for n = 0,
eq

we therefore need two equations.
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m

n In
K - ÷

eq G(t) G(t)

for n + 1 - G(t) _L I
m

n + 1 -G(t)

Keq =

for n + 1 -G(t) > 1
m

Figure I0 shows the altered characteristics for various

values of In. For In > 1, the quantizer with the dither added,

as defined in this thesis, has the following saturation character-

istic:

G(t) + In _z n + 1

where: G(t) = n + a(t)

for 0 -_ _ < 1; n = O, 1, 2, 3.

With this limitation, the quantizer exhibits a region of

infinite gain at a quanta point for In > 1. If the system is to

be used for positioning, this condition is intolerable since a

limit cycle will always exist. Therefore, the dither amplitude

must be kept equal to or less than 1. This ensures a region of

zero gain (i. e., a dead zone) at a quanta point and will allow

the plant to be positioned within + (1 - In) of an integral

number of quanta.
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The effect of a variation in dither amplitude can be

easily demonstrated by observing the change in the describing

function for the altered quantizer. The describing function

allows replacement of the quantizer by an equivalent gain K .
q

This gain is determined by assuming that a self-sustained

oscillation of _(t) exists and that this oscillation is a sine

wave. The output of the quantizer is expressed in a Fourier

series, and all harmonics higher than the first are ignored.

The K is then the ratio of the output amplitude to the
q

input amplitude. A general describing function for the

dithered quantizer is developed below. The input-output

relationships for the quantizer are shown in figure 11.

The quantizer output may be expressed as a Fourier

series, as follows:

a 0 00 0o

F(t) = _ + Z a Cos(n_t) + Z b Sin(n_t)n=l n n=l n

where: a 0 = 21----_02w

I _2w

n

b n = 1-_02_

F(_t) d(_t)

F(_t) Cos (n_ot)d(_ot)

F(_t) Sin (mot) d(_t)

Since F(_t) is an odd function, a 0 = a = 0.n
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Consequen_y,

-e_

F(_t) Sin(_t) d(_t)

Z Z1
_n A SinZ(wt) - A Sin(_l) Sin(_t) d(wt):

+;z-_in(_ot) d(_t)

[_4 ml Sin(_ot) ] d(_ot)[A SinZ(_t) - A Sin(_3)
+

_3

4 Sin(_t)d(_t) + +

+_-;_ [A Sin_-(_t) - A SinCe3) Sin(_t) ] d(_t)

By integrating:

_Z

+ Sin(_l) Co.(_t_

_
_4

A I_ Sin(2_t) +_ Cos(mt_+ _ _ _ Sin(@
m 4

_3

_ ._- _4 +

- [Cos(_t)_4 +

_-_3

A [_ Sin(2lot) + Sin(_3 ) Cos(u_t)|
rn 4 "_-_4
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Ir-_l ]A [_ Sin(_t) + Sin(_l ) Cos(_t_m 4

_-_2

In general,

Z
= -- _ I_1b I

+ _4 - _3 + ..... + (-1)n Fn}

A ZSin(_l) Cos(_l ) + --- ++ -- {ZSin(_l) Cos(_ z) -
m

+ ZSin(_2n_l) C°S(}_Zn) - ZSin(bLZn_I) C°s(_zn_l) }

+ zco,(_z)+ ZCo,(_4) + ....+ ZCo. (_n)

+ 4 + (-l)n7

for n = 0, i, Z, 3, 4...

1 - m : Sin-1 1 - m
-------; _1Where: A Sin(_ I) = Z

.I +m

A Sin(_ z) : "F--;

-I l+m

_Z = Sin ----'--ZA

3-m 3 -m
A Sin(_ 3) = --'---; _3 = Sin-IZ ZA

n - m - Sin I n - rn
A Sin (_n) = --; _n ZAZ

-for n = i, 3, 5, 7 • • -
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A Sin(_n) =

for

(n- l)+m
Z _n = Sin-I (n- i) +m'"; ZA

n= 7, 4, 6, 8 . . .

The special case when

linearized quantizer.

m=0;

m = 0 gives the expression for the non-

For this case,

_Zn = _Zn-I

lim

m-)O

Therefore:

lim

m_0

A {_Z _I + % _3 ) 0_n ..... = O

d {_Z- _I +_4- _3"dm
..) = 0

I

Similarly,

lira

m-_O

Z'
A l-re. 1 m
m A" - --_ -_ -

1°-{- . • . ----

Therefore:

j,
lim d [ (I - m 1m._O _ A _ -

i

1-_____m . +..
- A

Therefore, in this case,

b I = 4 {Cos(},Z ) + Cos(_4 ) + .
Tf

+ Co,(_n) }
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From these equations, the describing function can be

determined

K - bl

q A

Figure IZ shows the plot of K versus A for various
q

values of m. The following observation can be made from these

curves:

lira K = I

A+00 q

For dither amplitudes other than I, the altered quantizer is still

nonlinear. If the limit cycle that was assumed for the describing

function were considered as a dither signal, the above fact

shows that a large amplitude sine wave dither signal tends to

linearize the quantizer.

This fan_ly of curves indicates the effect of a change in

the dither amplitude on the stability of the system. If G(j_) is

the system transfer function of the plant, then the closed loop

transfer function between input and output is:

K G(j¢o)
-_ ¢I,,

_(j_) 1 + K GCj¢o)
q

A sufficient condition for existence of a sustained

oscillation in the system is:

!
G(j¢_) = -_--

q
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For the case where m = 1 , the quantizer is exactly

linearized and can be replaced by a unity gain in the loop. This

fact allows the stability of the system to be checked by any of

the familiar linear stability criteria, such as the Nyquist, Routh
10"

Hurwitz, root locus, etc.

If [G(j¢_) [ is_ 1 the system will be stable. Since

at the point of interest, G(j_) is real and G_) = -180 ° , the

1

G(j_) line can be drawn in figure IZ for a given G0_). A limit

1

cycle can exist if Kq is greater than _ at any point. The

amplitude of the limit cycle, if it exists, is determined by the

1

point of intersection of the Kq and the G0_) lines. In most

cases, as can be seen from the curves, there will be two points

1

of intersection for each crossing of the _ line. The ampli-

tude of the stable limit cycle that will exist is the larger of the

two. The frequency of this limit cycle is that frequency which

will cause _G_j_) = -180 °. These limit cycles are only

possible with step disturbances or initial conditions since an

autonomous system was assumed, and they are only approximate

due to the neglect of all harmonics higher than the first in the

Fourier analyses of the quantizer output wave form. These

curves do, however, give a qualitative idea of the effects of the

dither amplitude.
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The input signal to the plant is applied by a relay, shown

in figure Z. The relay is another highly nonlinear element which

can be linearized by adding a dither to its input signal. Figure

13A shows the input-output characteristics of a dead zone relay.

This relationship for ]ei(t) I < D is analogous to the first

period of the quantizer. The dual-input describing function

methods can be applied to replace the relay with the dither

added by an alternate relay. From figure 13C, for a fixed value

of e(t):

Therefore:

eOave(t) =_0 eo(t)d(t/Td)

1

=_ Kd(t/Td) = K- _b/T d/Td

K(I- _/Td)
K =

eq e.(t)
1

Where: D_
T d

Therefore:

If D =P,

for lei(t)l

+ e.(t) = D
1

K

eq

K

Peo(t ) = R

el(t)

p - D + e. (t)}
1

_z

K
eo(t ) = _ {el(t)}

P
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The relay can then be considered as a linear gain.

There will, however, be a ripple in the plant output of the same

frequency as d3(t ) . If the frequency is high relative to the

band pass of the system, the ripple is quite small. It will,

however, have an effect on the quantizer linearization.

As noted above, the manner in which d2(t ) , the quan-

tizer dither, was implemented causes an infinite gain at a quanta

point when the dither amplitude exceeds 1. In addition, it is

desirable to have a small dead zone or region of zero gain at

the quanta points. For these reasons, the amplitude of the

dither is less than 1, and its altered characteristics are shown

in figure 10.

I
i

The ripple caused by the linearized relay will produce a

second dither signal which can be assumed to be a sine wave.

The effect of the dither is additive and again alters the quantizer

characteristics. Its effects can be assessed in a manner similar

to that given above for the sawtooth dither. The equivalent gain

can be calculated from figure 11, as follows, noting that the

amplitude of this dither is very small dince the frequency of

d3(t) is high relative to the band pass of the plant.

1 _ZC

f20 ave = Z-_J _n Sin(_t) d(_t)

C r _-!'1

= L-co,( t>J
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C
Oave = _TnC°s(_I)" "

Since BSin(_l) = 1 - m
1

Therefore: _I = Sin-I ( 1 2B"m - _'_'I)

Therefore: _0 ave = _ 1 - -
_rn i

m_'-'. - _'1.1
1

2 !

!

Z

The altered characteristics are shown in figure 14 for

m = .9 and C : .1 . As can be seen, the discontinuities

have been eliminated and for

.9 -L m -z 1

and C = 0.1

the quantizer characteristics are very nearly linear. For the

remaining analysis in the thesis, it will be considered a linear

gain of I.

The assumptionthat the approximate dual-input describing

function can be used is valid since

dz(t ) = lOd3(t )

and d3(t ) is at least ten times the band pass of the plant.
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This change in the quantizer characteristics has a bene-

ficial effect on the describing function. Figure 1Z shows that

the equivalent gain for the case where nu is slightly less than

one has a rather high peak over the region of the dead zone.

The ripple in the plant output has the effect of substantially

reducing this peak.



CHAPTER IV

LINEARIZED SYSTEM ANALYSIS

The object of this chapter is to develop a synthesis

technique for the system proposed which will allow satisfaction

of a limited class of specifications on the response to both

ramp inputs and step inputs. Following the justification given

for the linearization of the dead zone relay in the forward loop

and the quantizer in the feedback loop, the system may now be

represented as shown in figure 15. The reference input signal

is in the form of a chain of pulses, with each pulse commanding

the system output to change one quanta. The pulse repetition

rate, therefore, is a measure of the velocity required for the

system. Due to the nature of this input, it is impossible to

have a completely smooth output_ and the system gain must be

designed so that the output generated will be satisfactory or

commensurate with the plant requirements over a reasonable

range of input rates. As can be seen from figure 15, the system

forward loop gain depends upon the saturation level. The

maximum possible saturation level in the system is determined

by the capacity of the counter; however, the saturation level can

be varied from this maximum down to zero.

The procedure for determining the gain requirement for

a satisfactory response to the ramp input is as follows. Since

42
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A." LINEARIZED SYSTEM SHOWING SATURATION AND A FIRST ORDER
PLANT

S(S+l )

B, SYSTEM MODEL FOR STEADY STATE SOLUTION

FIG. 15 SYSTEM BLOCK DIAGRAMS
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the input signal for a constant velocity of the output would be a

chain of pulses equally spaced in time, the Laplace transform

of the input signal can be expressed in closed form. The methods

of the steady-state Laplace transform calculus II can then be

applied, which will allow determination of the steady-state output

from the system as a function of time. From this solution curve,

the maximum peak-to-peak ripple can be determined for any

given system gain and input rate. The range of input rates for

satisfactory response can now be easily determined. The best

procedure is to calculate the error rather than the output since

the solution curve is not valid ifthe error exceeds the assumed

saturation level at any time during a cycle. The plant output

can be determined directly from the error signal since a line-

arized quantizer has been assumed.

In order to employ the methods of the steady-state

Laplace transform calculus, it is necessary to assume that the

error does not reach the saturation level in response to a ramp

input. This must be checked in each case to ensure that the

results are valid. Therefore, the system of figure ISB is

assumed for the following development.

Where:

Since r(t) is a chain of equally spaced pulses,

r(t) = Z 5(t- nT r)

5 is the impulse function
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Laplace transforming,

oo
-nsT r

R(s) : e

which is an infinite series and can be reduced to closed form,

i.e.

1R(s) =
-sT r1 - e

to be:

The open loop transfer function for the plant is assumed

K/E
sat=

s(s + 1)

and the closed loop function between R(s) and E(s) is:

Therefore:

E(s) (s + 1)

R(s) s(s + 1) + K/E
sat

/ %

E(s) = 1 ( (S + 1) I

1 - e-STr k s(s + 1) + K/Esa t I

The method of the steady-state Laplace transform

calculus is first to determine the transient portion of the

Since the transient is due to the poles of the denominator

polynomial,

2
s

+ s +KIEsa t : (s - Sl)(S - sz)

it is not necessary to evaluate the residues for the pole at

e(t).
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= 0. Therefore, the transient portion of the solution,

sit

e(t) - (Sl ÷ 1)e + (s2 + 1)eS2 t

tr (1 - e-TrSl)(Sl - Sz) (i - e-Trsz)(sz- Sl)

The next step is to evaluate the total response of the

system from t = 0 to t = T . For this time period, R(s) = 1
r

s
and the transcendental function (1 - e Tr) can be neglected.

The total response is:

e(t) = (Sl + 1)eSlt (s2 + 1)e sZt

tot (s 1 s2 ) (s 2 Sl )

for 0 -_ t -_ T
r

The steady-state response of the system for one period

of the input can be determined by subtracting the transient

portion from the total response. The steady-state response is:

1 t
e(t) (Sl + 1) es /

ss = 1- 1

(Sl - s2) _ 1 - e_rrsl

+ 21e2tC )(sz Sl) I - 1- 1 - e-Trs2

Where: s =

for K/E
sat

-0.5_ + J--v/K/Zsat

> 0.25

!

-0.25
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By substitution and reduction, this equation can be expanded:

e(t) _- e A Cos(K't) + B Sin(K't)
ss C

for 0 _ t -l T
r

Where: K'

sat

0.5T r
A = 0.5 Sin(K'T r) - K' Cos(K'Tr) + K'e

0.5T r
B = 0.5 e - 0.5 Cos(K'T r) - K' Sin(K'Tr )

C K [1 - eTr - zeO'STr Cos(K'Tr )]

K
If _< 0.25, the roots of the denominator polynomial

E
sat

are real and the final expression is simpler. Since the cases of

interest to this thesis are those capable of response rates above

the maximum produced by this condition, the results are re-

stricted to

K

E
sat

> 0.25

The performance of the system can be assessed by

determining the maximum peak-to-peak ripple Ap of the output

variable. The equation given for the error is the difference

between a step function and the output. This step function is a

quantized ramp function. To determine the ripple in the plant
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output from the error equation given above, it is necessary to

add a term, as follows:

_(t) = r(t) - e(t)
SS SS SS

The desired steady-state input:

= t
rd(t) ss TG

Where: T r is the period of the step function

Therefore: _(t) _ t e(t)
ss T r ss

Figure 16 plots the peak-to-peak ripple as a function of

K'T r for a range of values of the forward loop gain. These

curves were determined by the computer program given in

appendix D. The equation used for determining the peak-to-

peak ripple is:

P ite,t,1 IG SS SS

max. rain.

The conditions for a maximum or a minimum are:

d (fl(t)ss }

dt

dZ (_(t)
If ss

dt 2

d2 {_(t) ss)

dt 2

= 0

is positive, a maximum occurs.

is negative, a minimum occurs.

Conversely, if



49

2.8

2.6

2.4

2.2

2.0

1.8

1.6

I0.0

K=I

0
I 2 3 4 5 6 78910

K'T r

FIG. 16 K'T r VS. PEAK TO PEAK RIPPLE (IN QUANTA)

20 3O



50

Therefore:

de(t)

dt = e-0.5(t - Tr) [Cos(K,t){K, B _ 0.5A}

- Sin(K't){0.5B + K'A}]

Therefore, the condition for maxima or minima is:

Tan-1 K'B- 0.5AK't
0.5B + AK'

Since the function is a sinusoidal function, the maximum

and minimum points occur Ir/Z degrees apart. The performance

index requires determination of both maxima and minima;

therefore, the above condition need only be satisfied at one

point.

Figure 17 plots the maximum peak-to-peak ripple in the

time rate of change of the output variable. The equations from

which these curves were generated are given below:

_t)
Ke-0" 5(t- Tr) r

ss = _ [IV[ Cos {K'(T r - t)}

Sin{K'(T r - t)}]+ N

J

for 0 -_ t -_ T
r
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0.5T r
Where: M = e Sin(K'Tr)

0.5T r
N = I- e Cos(K'Tr)

C = K'{I + eTr - _-e0"5Tr Cos(K'Tr) )

The conditions for maxima or minima along this trajectory are:

0.5M +K'N
K'(Tr - t) = Tan -I K'M - 0.5_q

Both figures 16 and 17 demonstrate a resonance in the

peak-to-peak ripple at a value for K w = Znw, where n = 1,

Z, 3 . . . Reference to the system transfer function will show

that K t represents the damped natural frequency of the system.

Since T r is in units of seconds per cycle, it is not unreason-

able that the resonant peaks should occur as shown. The

maximum ripple is kept below 0.1 quanta from 0 -_ KJTr -_ Z.

It is obvious that there is an input rate below which the output

ripple is unsatisfactory depending on the system specifications.

The range of input rates over which a satisfactory output is

obtained may be substantially increased by the addition to the

control circuit of a weighting factor M. The system as defined

up until now has weighted each input pulse to be equivalent to a

change in the output position of one quanta. If this rating were

reduced by one tenth, the peak-to-peak ripple, as shown in

figures 16 and 17, would be reduced to one tenth of their value.
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In other words, the addition of this weighting factor appears as

a gain on the input line ahead of the closed-loop transfer function,

as shown in figure 18. In order to command the same velocity

of the output variable _2(t) , as in the other case, the pulse

repetition rate of the input must be increased by a factor of 1/M.

The means of implementing this additional gain is discussed in

appendix A. The net result of this new circuit is to increase the

operating range of the system. A satisfactory range can be

determined from figures 16 and 17 by multiplying the ordinates

of these curves by M.

A system that is designed for a path-control operation

should be capable of responding to step inputs. A satisfactory

criterion for the step response would be specification of the

maximum overshoot. A second possible criterion would be the

number of sign reversals of the error. Both of these criteria

can be satisfied by use of the phase plane if the system is of

second order. In systems higher than second order, simul-

taneous phase planes can be used, but the method becomes much

too complex for consideration and other techniques must be

employed. Nonlinear techniques must be used to analyze this

response since there is a saturation characteristic in the

forward loop. It is also feasible to consider adaption within the

loop that will use one saturation level for path control and one

for step response. This is particularly valid within the machine

tool control field. In order to use the phase plane, the system

differential equation is best expressed as follows:
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R (S)
S

FIG. 18 SCHEMATIC BLOCK DIAGRAM SHOWING WEIGHTING

FACTOR USED TO INCREASE SATISFACTORY OPERATING
RANGE OF SYSTEM
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dZ{e(t!} + d{e(t)}

dt 2 dt

for e(t) < E
sat

+ {K/Esat}e(t)
= 0

and d 2{e(t)} + d{e(t)}

dt 2 dt

for e(t) > E
sat

+ K/E = 0
s at

The isoclines for the unsaturated operation are:

[ {K/Esat}e(t) ]
d&(t) 1. +
de(t) = - _ 6(t) J

for e(t) -_ E
sat

Where: _ = d_,e,t,.l(_l-
dt

or

for e(t) _x E
sat

Since the equations for the isoclines are straight lines,

the phase plane is relatively simple to plot. However, the

isoclines are a function of the saturation level, and this requires

replotting of the phase plane is0clines for each value of E
sat
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that is to be investigated. Since the system exhibits a saturation

characteristic, the maximum output velocity is limited. This

maximum velocity can be determined as follows by observing

that, when the error is saturated, the input to the open loop

transfer function is a step input with an amplitude equal to K.

{K/Esat}E(s)

s(s+ 1)

E
Let E(s) = sat

S

K
Therefore: n(s) =

sZ(s+ 1)

and Lira _ Lira
n(t) = s{s_(s)) = K

t-_ov s-_O

The step response in its worst case is for the _(t) to

be a maximum when the system enters the linear region. This

would occur for large step inputs. If the specifications for step

response limited only the overshoot, it would be necessary to

plot the phase portrait in the first or third quadrants only on

the phase plane for each value of saturation level that is to be

investigated. Figure 19 has a sample phase portrait plotted on

it showing an overshoot of 2. Z quanta. As mentioned above, a

system of an order higher than two requires an extremely

difficult analysis in the phase plane, and the reader is referred

to several alternate analytical techniques that can handle the
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saturation characteristic very well. Several of these are

described by Thaler and Pastel and by Graham and McRuer.
12

This chapter has presented techniques for designing the

system to follow an input path and to design the system to have

satisfactory step response. Both of these methods will be com-

pared to an experimental model in chapter 5.



CHAPTER V

EXPERIMENTAL INVESTIGATION

This chapter introduces a physical model to verify the

mathematical model developed in chapters 3 and 4.

In order to use the same form of transfer function chosen

as an example in chapters 3 and 4, a d-c motor with armature

control was selected as the controlled plant. Figure 20 shows

the block diagram for the experimental model. The parameters

in this figure are identified as follows:

R ____

E =

=

K =
1

E =
sat

K Z =

K =
3

input data (quanta)

controlled plant input (volts)

system output (radians)

maximum armature voltage (volts)

saturation level (quanta)

open loop plant gain (radians/volt)

feedback gain (quanta/radian)

The transfer function for the motor, developed in

appendix C, is as follows:

z.z6

E*(S) S(0. 0379S + I)

59
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For the experimental tests,

K = 6.5
1

E = 10.0
sat

K 3 = 63.6

By reducing the block diagram of figure 20, the closed

loop transfer function is obtained.

38.6
R(S) S2 + 26.6S + 2460

The damped natural frequency of the closed loop response

is:

_d = 7.6 cycles/second

Figure 21 shows the experimental step response for the

above set of parameters. From this figure, the damped natural

frequency measured is 7.5 cycles per second.

To obtain a step response that would give a good measure

of the damped natural frequency, it was necessary to subject the

system to a large step input which exceeded the saturation level.

A step input of 32 quanta was used. This step size was satis-

factory for a system loop gain of 38.6 because the system did not

overshoot into saturation.
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63

In order to verify the overshoot obtained, a phase portrait

of the experimental model was constructed. It is shown in

figure 22. The measured overshoot was 6.4 quanta. This differs

from the value determined from figure 27 by 9.4%, which is

within the measurement accuracy of the experimental model.

The step response test reported above was checked at

higher values of loop gain. The gain was increased by decreasing

the saturation level. The only parameter checked from these

other tests was the damped natural frequency since the first

overshoot was in the saturation region. In all cases, good

correspondence existed between the theoretical and the measured

frequencies. _All measured values were within 5% of the corre-

sponding theoretical values.

The ramp response of the system was also checked. A

pulse generator provided a constant frequency pulse input to the

system. Figure Z3 shows both the theoretical response for the

system and the experimentally determined values.

At the low input pulse rates, the experimental values are

somewhat lower than the theoretical, and no sharp resonant peak

could be determined. Both of these characteristics are due to

the friction in the system. In order to obtain a linear transfer

function for the system, the fricticm p_op_rties were lumped
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with the damping coefficient. The friction does _ot allow the

system to o_rershoot in response to very small step inputs.

This characteristic limits the peak-to-peak velocity ripple to a

value somewhat less than the rnodel will predict and will not

allow the system to resonate at the damped natural frequency.

At the lower input rates, the velocity ripple was not

constant. The points shown on figure _B are the average values.

The variation is caused mainly by the variation in armature

resistance. This resistance varies from 17 ohms to a maximum

of 70 ohms, depending upon the angular position of the rotor.

The transfer function was modeled on the average resistance of

Z5 ohms. This variation in resistance would not affect the step

response data given above because the step input was large

enough to average the resistance°

Figure _B plots the velocity ripple due to the input pulses°

The theoretical curve assumes that the time between the input

pulses is constant. The pulse generator used to generate the

input signal was subject to a low frequency drift which caused

the output to exhibit a limit cycle. This phenomenon was most

evident at input rates from two to four times the system damped

natural frequency. Other limit cycles were observed as the

input rate approached a sub-multiple of the relay input frequency.
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The maximum output rate for the system can be

determined from the open loop transfer function, assuming

the maximum error signal exists:

s (s)
$6.5(2.26)

SZ(O. 0379S + 1)

By the final value theorem of Laplace transform

calculus, the maximum steady-state output rate is:

14.7 radians/second.

The results presented in this chapter verify the use of

a linear model in predicting the system response. They also

point out the need for a means of adapting the system to com-

pensate for limit cycles in the output.



CHAPTER VI

CONCLUSIONS

This thesis has shown that satisfactory performance for

a pulse-data relay system can be obtained by linearization of the

quantizer and of the relay. This was shown theoretically and

was verified by an experimental model. The digital-to-analog

converter can be successfully eliminated from the conventional

system, and the ripple produced in the output by the linearized

relay can be minimized by using a solid-state relay, which is

capable of extremely high frequency operation relative to the

band pass of the system. The logic required to implement this

type of system is described in appendix A. The quantizer used

to effect the linearization was a commercially produced unit.

It is shown in appendix A that the dither can be added to this

quantizer without allowing the dither frequency to affect the

count in the bidirectional counter or to dither the system at this

frequency.

There are many advantages in linearizing a quantizer.

The net result depends upon the amplitude of the dither, as was

shown in chapter 3. If this amplitude drifts, the quantizer is

not exactly linearized. However, if the maximum drift of the

dither amplitude can be maintained within ten per cent, then the

over-all effect of the linearization is to increase the resolution

68
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of the quantizer by a factor of ten. In addition, the system pro-

posed in chapter 4, with a gain added in the input loop and

implemented as described in appendix A, makes it possible to

control the system to a resolution ten times that determined by

the least bit in the counter.

implementation of a velocity feedback from the quantizer

would be very fruitful. As mentioned earlier, a quantizer can

be considered as a frequency modulator. If the output pulses

13 and 14
from the quantizer were fed to a Shannon rack decoder,

the output from the Shannon rack decoder would then be an

analog voltage proportional to the first derivative of the output

variable. With this implementation and a second order plant, it

would be possible to define an optimum controller since informa-

tion on all output state variables would be available. The

linearized relay system as used in this thesis lends itself readily

to description by vector matric difference equations. Having the

equations in this form allows stability investigations by the

second method of Lyapunov, and the investigations carried out

by Nelson 15 can be applied to approximate a minimum time

controller for response to step inputs. There are many other

sophisticated techniques that can be applied to the analysis of

this system provided information on the rate of change Of the

output can be obtained.



APPENDIX A

In this appendix, a detailed description of the implemen-

tation for the system is given.

L_

Figure 24 shows a detailed block diagram of the basic

system. The bidirectional counter performs the function of

registering the error in the binary number system to an integral

number of quanta. It accomplishes this task by adding input

pulses r(t) and subtracting feedback pulses _(t). The feed-

back pulses are originated by the quantizer block labeled (_,

This quantizer emits direction-sensitive pulses. The input

pulses are assumed to be obtained from magnetic tape or some

other source. The diode matrix following the counter decodes

the error from the binary number system to the decimal system.

The output from the diode matrix is gated to the circulating

register. This register sets the saturation level for the system

and gates the pulses which turn off the relay. A pulse is gated

from the circulating register to turn off the relay when the bit

in the circulating register corresponds to the decimal equiva-

lent of the error, The clock driving the circulating register is

used to turn the relay on when the first bit in the circulating

register is set. The output from the quantizer O is a signal

that is proportional to distance between quanta points. This

signal is summed with the wave form provided by the sawtooth

70
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generator and is then used to alter the turnoff point of the relay

to account for the quantization error. The sawtooth generator

is driven by the same clock that is used to drive the circulating

register. This causes the quantizer dither frequency to be much

greater than the effective relay dither frequency. Each of these

separate circuits will be presented in detail,and timing diagrams,

where necessary, have been shown in the following sections of

this appendix.

Quantizer and Direction-sensing Circuit

The quantizer used for this system was purchased from

W. and L. E. Gurley. It is a photoelectric system with two

photoelectric cells positioned so that there is a 90 ° phase

difference between their respective outputs. This phase

difference allows the direction of rotation to be sensed. Between

the photocell and the light there is an aperture which causes a

linear variation in the light intensity that reaches the photocell.

The output from this quantizer is shown in figure 26. It may

be seen that the output is not exactly a triangular wave but, in

the regions from 45 ° to 135 ° and from ZZ5 ° to 315 ° on each

trace, the output is proportional to the amount of rotation.

This fact allows these portions on each trace to be used as a

position feedback signal. The manner in which these are

utilized is discussed later in this chapter.

Since the portion from 45 ° to 135 ° is used to indicate the

distance between the quanta points, this forces the quanta points
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to be located at (45 ÷ _) degrees of rotation, where n - 0, 1,

Z, 3 . . . The output wave form must be converted into a square

wave to be compatible with the bidirectional counter. This con-

version is accomplished by use of a threshold device which has

the characteristics of an ideal relay. A Schmitt trigger is used

to accomplish this task, and the circuit is shown in figure 27.

Figure Z7 shows the schematic diagram of its operation. The

point -D is the trigger level. It was necessary to use two

triggers on one line in order to accommodate the requirement

for pulses at two separate levels. As shown in figure 28,

signal A operates two triggers, A1T and AZT. A1T is

turned on at (45 ÷ n_) degrees and is turned off at (B15 + n_)

degrees. A2T is turned on at (135 ÷ nT) degrees and is turned

off at (ZZ5 ÷n_) degrees, where n = O, 1, Z, 3 .

Figure 29 shows the logical implementation of the

direction-sensing circuit. In order to sense the direction of

rotation, signal B is converted to a square wave by trigger

B T . The threshold of this element is set so that it triggers at

(0 ÷ n_) degrees. This threshold is determined by the require-

ment that there must not be coincidence between a change in the

state of B T and a change in the state of either A1T or AZT.

The logical equations required to determine the direction

of rotation are given below:

Forward: f = =A1B + =A + [BAzB + [3A1B
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Backward:

Where: a

B

B = aAIB + aA2 B + _AzB + _AI B

represents a positive transition of the trigger

represents a negative transition of the trigger

represents the ON state of the trigger B T

Bidirectional Counter and Anti-coincident Circuitry

The logical implementation of the bidirectional counter

and the anti-coincident circuitry is shown in figure 30. Since

the bidirectional counter must accept puises from two separate

sources and must account for every single pulse, it is necessary

to include circuitry which will prevent two pulses from arriving

at the input to the counter simultaneously. Any circuit designed

to accomplish this task must refrain from forcing the definition

of coincidence between pulses.

The circuit used, as shown in figure 30, employs four

memory stages. Two of these bits are for the input pulses and

two are for the feedback pulses. Since both the input and the

feedback have positive and negative pulses, it is necessary to

have a memory bit for each direction. The input or feedback

pulses set the appropriate flip-flop, and the clock shown in the

circuit resets the flip-flops in a given sequence. Since it is

impossible to have coincidence of a positive and a negative

pulse in the input signal, both input flip-flops may be reset

simultaneously. This same reasoning applies to the feedback
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line. This allows one output from the clock to reset the input

flip-flops and the other output to reset the feedback flip-flops

since these outputs are 180 ° out-of-phase with each other. The

frequency of this clock must be, at a minimum, equal to the

maximum possible frequency of input or feedback pulses. The

clock used in this report is operated at 250 kilocycles, and the

maximum frequency of either input or feedback pulses has been

shown in chapter 5 to be equivalent to a pulse repetition rate of

four kilocycles. A pulse is then registered in the counter when

any of these memory bits has been reset by the clock.

The counter consists of five bits, allowing maximum

possible count in binary of 64, with one extra bit to register the

sign of the error. The optimum number of bits for a bi-

directional counter in this circuit is determined by the maximum

expected error in the system. This maximum error would

occur when the system starts from rest to follow the maximum

input rate. Figure 31 shows the transient portion of this

response, indicating a maximum error of 18 quanta. In

order to accommodate this maximum error safely, five

memory bits were necessary. H the error in the system

exceeds the maximum count of the bidirectional counter, pulses

would not be counted or the counter would dump and indicate a

count of zero. (The maximum count in the counter would occur

when all the bits of the counter were set. At this point, if there

were one more pulse to increase the count, the next state of the
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counter would be all zeros. Therefore, the counter would go

from maximum error to zero error with one pulse.) This

situation can be easily detected and protected against by the

inclusion of one extra bit. This extra bit would flash a warning

light when it was set, indicating difficulty within the system.

The other possibility is simply to forbid input pulses that would

count the counter beyond its maximum, incurring a loss of

information. It is important to note that any error exceeding

the maximum capacity of the counter would indicate that there

were troubles within the system.

If the system is to follow step inputs, the maximum

step to be allowed might exceed the maximum error determined

by the above procedure and would indicate the need for extra

counter capacity. This, however, can be easily bypassed by

implementing the step inputs that would exceed the maximum

capacity of the counter in a manner apart from the presetting

of the counter with the maximum step. In other words, this

could be accomplished by using several step inputs or by

implementing a step input as a maximum pulse rate input.

Decision Logic

Figure 32 shows the logicai implementation of the

decision logic block consisting of a diode matrix, converting

the error from a binary number to a decimal number, and a

circulating register. The circulating register is a ten-bit
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shift register which circulates one bit. The clock pulse that sets

the first bit of this register is used to turn on the relay, provid-

ing there is a non-zero error in the system. The bits of the

circulating register have been gated with the output from the

binary-to-decimal converter so that, when there is coincidence

between the nth bit of the register and the error, the next clock

pulse will reset the relay. If the error is equal to or greater :

than ten, the relay will not be turned off since the next clock

pulse will be a command to set the relay. There is a decade

switch provided which allows the circulating register to re-

circulate after n bits, where n = I, Z, B . . . i0. This sets

the saturation level at n. The frequency of the dither signal

used to linearize the relay, as discussed in chapter 3, is

therefore equal to I/n times the frequency of the clock driving

the circulating register. The two flip-flops, F and B,

transfer the error sign information to the relay. Two memory

bits are needed here to implement a dead zone relay. If an

ideal relay is desired, only one would be required. The set and

reset logic for the relay is given below, where the letters refer

to the least four bits of the bidirectional counter, as indicated

in figure 30.

Reset F = {82._-1C 1 + 8421C Z +. . + MCn_ 1

Set F = (M + 1)C S
n

}{8(4+ z))s
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Where: M

S

is the binary equivalent of (n - 1)

is the sign of the error: S for negative error

S for positive error

C is the nth circulating register bit
n

The reset and set equations for the flip-flop B

the above with S replaced by S.

are identical to

The set and reset logic_ as described above, are for a

system with no linearization of the quantizer. When the linear-

izing circuitry has been added, it is necessary to modify this

circuitry to accommodate the linearizing signal, which is

described in the following section.

Linearizing Circuit

The linearizing circuitry is shown in figure 33 and

consists of a sawtooth wave generator, a summing circuit and

a trigger element. The circuit for the sawtooth wave generator

is shown in figure 34. This circuit uses a unijunction relax-

ation oscillator and a simple a-c amplifier to invert the signal.

The clock input to this wave generator drives the generator at

the clock frequency_ provided the relaxation frequency is lower

than the driving frequency. From figure 24, it can be seen

that the clock driving this wave generator is the same clock

used to drive the circulating register. Thus_ the wave frequency

is equal to n times the dither frequency for the relay_ where n

is the saturation level for the relay.
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Figure 35 plots the quantizer output with the dither added

as a function of time, assuming that the system is running at a

constant velocity. The dither frequency has been shown to be

ten times greater than the quantizer output frequency. In the

system, this is the minimum frequency ratio that can exist

between these two signals, which validates the usage of the dual

input describing function in chapter 3. For half of the cycle,

the proportional quantizer output is an increasing function, and

the normal wave form is added. For the other half of the cycle,

the proportional output is a decreasing function, and the dither

signal must be subtracted. The inverted dither effects this

subtraction. The decision as to which signal, summation or

subtraction, is to be used is shown in the following logical

equations. These equations have been derived from figure 28

and from the definition of forward and backward directions of

rotation.

{A +d(t)} = aA1

{A - d(t)} = {5A2

{B + d(t)} = aA2f + _A1B

{B - d(t)} = _A1 f +aA2B

Where: a represents a -12 to 0 volt transition of the

trigger output

represents a 0 to -12 volt transition of the

trigger output



90

Z

aO

laJ
"2::3
I--

0.
:S

I

0
0 •2 .4 .6 .8

TIME (SEC X I02)

FIG. 35 QUANTIZER OUTPUT PLUS DITHER



91

A and B are ouputs from quantizer Q

These equations represent the analog quantity {A + d(t)),

etc., as a boolean variable. To implement this function, a

special "and" gate was designed to accommodate both analog

and boolean variables, as shown in figure 36. When C is -12

volts, the inverse of {A + d(t)} will be available at D; when

C is grounded, there will be no transference of {A + d(t)}.

It is possible to add more stages to the circuit provided only

one input at a time is activated. With more than one stage,

the unit performs an "either/or" function, which can be

expressed in "and/or" logic, as follows:

D = (A +B + C + . . .)(AB)(AC')(BC)(A-B'-C)( . . )

In order to obtain a function which will provide the

proper gating for the appropriate signals, an observation can

be made on the sequence for these signals. Table 1 shows

the sequence for the forward and backward directions of

rotation. It is shown that these sequences are the reverse of

each other. Table Z shows that the state at (f_ _+ 1r/Z) is

dependent only upon the state and direction of rotation at G.

The two-bit binary bidirectional counter with a diode

matrix binary-to-decimal converter was used to implement the

above sequence. This circuit is shown in figure 33 . The input
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TABLE 1

DITHER SEQUENCE FOR THE DIRECTIONS

OF MOTION OF THE OUTPUT VARIABLE

Forward
Backward

{A + d(t)} (I)

{B + d(t)} (Z)

{A - d(t)} (3)

{B - d(t)} (4)

{A + d(t)} (i)

{A + d(t)} (I)

{B - d(t)} (4)

{A - d(t)} (3)

{B + d(t)} (Z)

{A + d(t)} (i)
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TABLE 2

DITHER STATE TRANSITIONS AS A FUNCTION

OF THE PLANT OUTPUT (_)

{A + d(0 }f

{A - d(t) }f

{B + d(t)}f

{B - d(t)}f

{A + d(t)}B

{A - d(t)}B

{B + d(t)}B

{B - d(t)}B

{B + d(t)}f

{B - d(t)}f

{A - d(t) }f

{A + d(t)}f

{B - d(t)}f

{B + d(t) }f

{A + d(t)}f

{A - d(t):}f

{B + d(t)}B

{B - d(t)}B

{A - d(t)}B

{A + d(t)}B

{B - d(t)}B

{B + d(t))B

{A + d(t)}B

{A - d(t)}B
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to flip-flop D, used to gate forward or backward counts, is

delayed such that any pulse indicating a reversal in direction of

rotation is counted by the counter before the count direction

levels are changed.

Both the normal and inverted sawtooth dither wave forms

are needed for linearization with positive and negative error.

The dither is added to a signal proportional to the plant output,

but the linearization is achieved by altering the quantized error

signal. The quantizer input-output relationship must be re-

defined when the results of quantization of the feedback signal

are observed in the forward loop. Figure 37 shows the quanti-

zer Q* input-output relationships as observed in the forward

loop. The dither must be subtracted at this point.

Figure 37 also shows the means of implementing the

dither with both a positive and a negative error of _. With

a positive error, the normal dither form is subtracted; with

a negative error, the inverted dither is subtracted. The output

from the quantizer plus dither has also been shown for one

cycle of the dither. The following equations show that the

average output from the quantizer is equal to the actual error

assumed. If, however, the normal wave form were subtracted

from the negative error, the average output would be (_- I)

rather than _A.



m

+

I

1-

O
W

m

A

O
I,IJ

96

_a

l,iJ
T'
I--'
tl.,
O

Z

i

(/)
I,d
"1-

O

O
tlJ

I
!

4, zz

_0

-J n-
__w

K)

m

u.

o _-

b-

_o_ _a z

II I/_ ,,



a

97

t 00

d(tlN = _-- - n_=0 u(t- nTd)
d

t o0

d(t)l = - T-_ +n_--0u(t- nTd)

Therefore :

.Td

+ = _d/dt = _-(Td_ T )E0 ave d

Where: T = Td(1 - A)

Therefore: E +
0 ave

= A

Eo T fo _T
= -dt =

ave T d

= A

Therefore: E 0 = -Aave

.As shown in figure 33, the output from the summation

process is converted to a square wave by a trigger. The

threshold of this trigger is set equal to a level corresponding

to one quanta. The change in state of the trigger is used to

reset the relay. The logic required is different when the error

is positive than when it is negative. When the error is positive,

this signal turns off the relay when it occurs, as the reset gate

for the relay flip-flop for a positive error is gated open at this

time by the combined decision logic circuitry. However, when
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the error is negative, this reset line is not gated open, and the

signal from the trigger on the leading edge of the sawtooth wave

form is used to gate open the reset line. Hence, when the

summation of the dither and the signal from the quantizer are

equal to one quanta, the relay will then be reset. This problem

arises because the error indication by the bidirectional counter

is always greater than or equal to the actual error that exists

when there is a positive error. It is always equal to or less

than the actual error when the sign of the error is negative.

The circuit used to change from the normal to the inverted wave

form is shown in figure 33. It performs an "either/or" function.

Figure 38 shows a timing diagram for the relay operation

for both positive and negative errors. The time delay in relay

closing T has also been indicated in figure 33. This figure

clearly shows the difference in operation between a positive and

a negative error.

The quantized error stored in the bidirectional counter

is always greater than the actual error, due to the definition for

the quantizer, shown in figure 37. For positive errors, the

relay must be turned off by the compensating signal before it

would be normally turned off by the circulating register output.

As shown in figure 38, the reset level is set to gate either the

clock pulse occurring with a coincidence between the circulating

register and the bidirectional counter or a pulse from the

linearizing circuit.
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In order to minimize the circuitry, this same register is

used for negative errors. The compensating signal is now used

to delay the turnoff of the relay beyond the time that the circu-

lating register output pulse would normally turn it off. Since

the normal reset gating level is not available, other means are

used to gate the compensating pulse at the proper time.

Relaz

Figure 39 shows the configuration used for the input to

the armature of the motor. This is a solid state relay which

provides a zero source impedance when the power is turned off.

The source impedance is essentially zero when the relay is

turned on, due to the zener diode regulated power supply. This

relay is capable of being driven at frequencies of up to four

kilocycles, which is much greater than the system band pass.

Compensating Scheme for Reducing Output Ripple

Figure 18 of chapter 4 shows a system with a gain in the

input line. This gain was introduced to allow an increase in the

range of input rates that the system will follow and still keep

the output ripple below a given maximum. This refinement was

not implemented in this thesis since the implementation dupli-

cates the circuitry used to control the relay and uses the same

reasoning to effect the error as was used in the section

describing the linearization of the quantizer.
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Figure 40 shows the suggested block diagram. The

capacity of the bidirectional counter C 1 is equal to the gain

M. This counter sends one pulse to the bidirectional counter

C 2 for every M reference pulses r(t). The count in this

counter C I represents the quantization error of the reference

input. This quantization error is accounted for by the decision

logic block number two. This block is identical to the decision

logic block described previously. The clock frequency driving

this block, however, must be I/M times the frequency of the

clock number one.

The pulse that is gated out from the decision logic block

number two will be used to turn the relay on early in the case

of a positive error and to delay the turning on of the relay in

the case of a negative error. The reasoning behind this is the

same as was presented for the linearizing signal from the

quantize r.
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APPENDIX B

The standard logical component circuit diagrams used

in this report are shown in this appendix.

Nor Gate

The nor gate satisfies the following logical function:

0 = (A 1 +A Z +A B + . . . +An )

Figure 41 shows the symbolic representation. Figure 41B

shows the circuit used to implement this function. To obtain an

"or" function, it is necessary to use a "not" element, which is

simply a single input nor gate.

Gated Pulse Generator

The gated pulse generator serves the function of an"and 'w

gate for a pulse and a level. The circuit is shown in figure 42

Time Delay Element

For short time delays, a gated pulse generator serves a

useful function. A level change from -IZ volts to 0 volts can be

delayed using a simplified gated pulse generator. Since the

"and" function is not needed, one transistor can be deleted from

the gated pulse generator circuit to form the circuit shown in

figure 43. It is possible to have a multi-input delay, which is

104
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an 'tot'! gate, as shown, for delaying -1Z to 0 volt level changes

on each input line. This is only satisfactory if the separate

inputs cannot occur simultaneously.

Free- running Multivibrator

The free-running multivibrator, shown in figure 44, is

used as a "clock". The frequency of this "clock" can be varied

easily by adjusting C and R. The output is a square wave

operating between -1Z and 0 volts.

Flip-flop

The circuit for the memory bit used (flip-flop) is shown

in figure 45. This circuit can be used with separate set and

reset pulses or, by joining the set and reset input lines, it

serves as a trigger element which changes state for every input

pulse. The unit operates on a level change from -1Z to 0 volts.

Figure 46shows the circuit used in the counter. It is a

two-bit bidirectional counter, and it is possible to mount this on

one printed circuit card for a 15 pin connector. This compact-

ing of components serves a useful function in minimizing the

number of printed circuit boards required for the total circuit.
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APPENDIX C

The method for determining the transfer function for the

d-c motor used in chapter 5 is developed below:

Figure 47 shows the schematic diagram of a d-c motor

with armature control. From this schematic, the following

equations can be written:

T = Kti = J d2_ + D --_ + T L (C-I)
a dt 2 dt

Where: T = output torque (ft. lb.)

K = torque constant (ft. lb. /amp. )
t

i = armature current (amp.)
a

2
J = armature inertia (ft. lb. sec. )

D = damping coefficient (ft. lb. /rad. /sec.)

= armature position (rad.)

T L = load torque (ft. lb.)

=K___
Vb ernf B dt

(c-2)

Where:
Vbern f = voltage produced by the armature

(volts)

K B = constant (volts/rad. /sec.)

112
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L di
d_

V = (Z + Ra) i + a a + KBo o a dt -_ (c-3)

Whe re: V = armature input voltage (volts)
o

R = armature resistance (ohms)
a

Z = source voltage (volts)
O

L = armature inductance (henries)
a

Figure 48 shows a plot of output torque vs armature

current for zero velocity. The constant Kt can then be cal-

culated from equation C-1:

T L
K -

t i
a

- 0.134

Figure 49 shows a plot of the open-circuit armature

voltage vs speed of rotation. K B can then be calculated from

equation C - Z:

Vbernf

KB - d_/dt = 0.182

Figure 50 plots the load torque vs the speed of rotation.

These curves were obtained by static tests. Therefore,

dgn di
-- = 0 and a
at2 d--_-

= 0
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Therefore, equation C-1 can be written as:

T L = K i - D _---t a dt

and equation C-3 becomes:

V K Bo d_
i --
a Z +R Z + R dt

0 a 0 a

Combining these two equations,

KtY KBKo - t d_
TL - Z +R Z +R ÷ D d-_

o a o a

By assuming that the curves in figure 50 are straight

lines, D can be determined from the slope as follows:

KBK-'r t
= + D

d_/dt Z + R
o a

The source impedance Z is zero, and the average
o

armature resistance can be determined by rotating the armature,

with no field voltage present, and allowing an ohmmeter to

average the resistance. The value obtained was 25 ohms.

Knowing the armature resistance, K B and K the drag co-t'

efficient may be determined as follows:
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-r KBKt
D = = 0. 0014

d_2/dt R
a

The transfer function can be obtained from equations C-l,

C-2 and C-3. By Laplace transforming and combining these

equations,

_2 Kt

Va (JS2 + DS)(R + L S) + KtKBS
a a

The denominator polynomial contains two terms as yet

not determined: J and L . Both of these values were measured
a

and were as follows:

3 = 0. gxl0-4ft, lb. sec.

L = 0.6 x 10 -4 henries
a

2

They are both of the same order of magnitude; however,

investigation of the denominator polynomial shows that it is

permissible to ignore L . The coefficient of S 2 in the
a

expansion of the denominator polynomial is independent of L
a

since

DL << R J
a a

Also, the coefficient of S 3 is very small, and its only influence
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is to place one pole comparatively far out on the negative real

axis in the S plane. The locations of the other two poles are

essentially unaffected by L
a"

Therefore, the transfer function is:

V a 2S 2

K
t

+ DS + KtKBS

2.26

S(0.0379S + i)



APPENDIX D

The computer program used to generate figures 16 and

17 is given. This program was written by Paul King, graduate

student, Case Institute of Technology.

IZI



- RUN 35C18t1, (300te30)

-N ALG TESTX

REAL AtBgCgDgTRtT_ETtM_NtOT_DTtKtDHtDL

REAL ARRAY Y(1009 ),X(1o°1010,1°021 S INTEGER IeJgL

FOR K=1-0,2o5,500,705,1003,150C,2C00 DO BEGIN

A=O.OS

READ(YIS

D=SQRT(K-0025)$

FOR I=(lt199) DO BEGIN TR=YIII$ IF Y(I) EQL OeC THEN GO TO BACKS

A=OoS*S]N(DITRI-O*COS(D*TRI+D*EXPiCoS*TR)$

B=CoS*EXP(OoSeTR)-OoS*COS(D*TR)-o*SIN|_*TRIS

C=D*(loO+ExPITRI-200*EXPIO,5*TRI*COS(O*TRIIS

M=EXP(3oSeTRI_SIN(_TR)$

N=I.O-EXP(_oS_TRteCOS(O_TR)$

DT=TR/503S T=C._S

FOR J=(ltltSC1) _O BEGIN

X(J'l)=IEXPICoSWITR-T))*|A*CDS(D*T)+B_SINfD*T)I/C)+T/TR S

X(JI2)=K_ExP(GeS_(TR-TI)_(H*COS(O*(TR-TJI+N*S|N(Dm(TR-T)))/C$

T=T+DTS ENDS

FOR L=I DO BEGIN DH=-I00000CS OL=10000C0$

FOR J=Iltl_501) 30 BEGIN

DH=_AXIXIJ_LItDH)S DL=WIN(x(JtLI,DL)S ENDS

WRITE(D,K,TR,DH,DL,DH-DLIS ENDS

BACK., ENDS ENDS

FINISHS

-N XOT TESTx

2.5 305 5,0 700 900 1100 12o0 13o0 000

lZZ
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